
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Greedy Modification of Kahn’s Algorithm to Solve

Circular Dependencies

Renaldy Arief Susanto - 13522022

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

Email (gmail): renaldyariefsusanto@gmail.com

Abstract—Circular dependendcy is a phenomenon that can

occur in many different contexts. Of course, while it’s desirable

to prevent them from occuring in the first place, there should also

be a technique to resolve them once they have been created. This

paper demonstrates the use of a simple technique in which we

can resolve (yet not necessarily optimize) all circular

dependencies that exist within a system, given that we have

defined all of the dependencies.

Keywords—graphs; cycles; Kahn’s algorithm; circular

dependencies; greedy;

I. INTRODUCTION

The term circular dependency itself is often used in the
context of software engineering, as seen in [1] and [2].
Examples include module imports or class dependencies.
However, it can perhaps also be used as an umbrella term,
which includes all conflicts that can be described as “two or
more things that depend on each other to function”. For
instance, it can happen in scheduling schemas or prerequisites.
These are also systems which require careful design, as one
may accidentally create a loop of dependencies if too many
constraints are defined. Here, I will define a dependency “A
depends on B” as “the object A requires that object B is defined
before it itself can be defined”. And thus a circular dependency
is defined as a situation where “a group of objects can not be
defined as they are dependent of each other.”

To prevent them from happening in the first place would be
ideal. But what if the problem arises anyway? Perhaps it is
better to redesign the system as a whole so as to create a brand
new schema which is cleaner. However, if we have a large
enough system, this may not be such a trivial task and
designing a new algorithm to generate a better dependency
chain might take time. It may also be the case that a simple
hotfix is required immediately, and we are not required to
refactor the system at all.

In any case, this paper demonstrates the use of a greedy
technique which attempts to resolve the circular dependency (if
present) in a system of dependencies, by selecting and
removing as little dependencies as possible. Of course, this
may not be desirable, as some dependencies may be crucial.
However, the results of this algorithm will allow the user to
identify what few dependencies can be modified in order to
quickly resolve the issue.

II. THEORETICAL BASIS

A. Using Graphs and Cycles to Model Dependencies

A graph consists of vertices (also often called nodes) and
edges. In this paper, the variable V will denote the number of
nodes in a graph, and the variable E will denote the number of
edges. The vertices may be arbitrarily labeled, for instance
using integers. For example, the following graph consists of 5
nodes and 7 edges:

Fig. 1. Example Graph 1 (copied from [3])

A path leads from node a to node b through edges of the graph.
The length of a path is the number of edges in it. For example,
the above graph contains a path 1 → 3 → 4 → 5 of length 3
from node 1 to node 5:

Fig. 2. Example of a path in a graph (copied from [3])

A path is a cycle if the first and last node is the same. For
example, the above graph contains a cycle 1 →3 →4 →1.

Regarding connectivity, a graph is said to be connected if
there is a path between any two nodes. For example, the
following graph is connected.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig. 3. Example of a connected graph (copied from [3])

The following graph is not connected, because it is not possible
to get from node 4 to any other node:

Fig. 4. Example of a disconnected graph (copied from [3])

The connected parts of a graph are called its components. For
example, the following graph contains three components: {1, 2,
3}, {4, 5, 6, 7} and {8}.

Fig. 5. Example of graph components (copied from [3])

Regarding directions, a graph may have directed vertices,
and thus considered to be a directed graph. A directed graph is
one whose edges may only be traversed in one direction. The
graph below is an example. To further clarify, one may traverse
from 3 → 1, but not vice versa.

Fig. 6. Example of a directed graph (copied from [3])

We can now model a set of objects and depedencies as a
directed graph: the nodes will represent the objects or events,
and the vertices shall represent the dependencies. A vertex
from node a to node b means that object b depends on object a.
These are also referred to as predecessors and successors,
respectively (though these terms are more often used for
prerequisite based problems, here the meanings are analogous
and thus I will be using these terms).

I now bring attention to the importance of cycles in this
context. If we are given a dependency chain model in the form
of a directed graph, a cycle in the graph implies that there
exists a circular dependency. It is clear that if a cycle exists,
we can traverse a particular node in the graph back to itself.
This leads to a loop in dependencies and thus needs to be
resolved.

Resolving this conflict can perhaps be done in a few ways.
One way, as mentioned earlier, is to redefining the objects and
dependencies such that a new system is created entirely. Here,
however, a much simpler way is to delete dependencies. Again,
this may not be ideal given the circumstances, but it’s an option
nonetheless. Hence, the problem can be reduced to: What set
of edges in the graph can we remove such that we eliminate
the cycle but also remove as little as possible?

B. Kahn’s Algorithm and Topological Sorting

Now that we have defined the representation of a directed
graph for a set of objects and dependencies, as well as the task
of finding the smallest set of edges to remove from the graph,
it’s time to breakdown the task into smaller subtasks.

First and foremost, we should detect whether or not a cycle
actually exists, because if it doesn’t, then there is no problem.
This is achievable through many ways and is a task that has
been covered in detail by hundreds of articles. One such way is
by attempting to do a typological sort of the vertices. A
typological sort is one where the vertices are validly ordered
according to their succession. In this case, a vertex A has to
appear after B if A (directly or indirectly) depends on B.

More formally, a topologically sorted ordering is an
ordering of the nodes of a directed graph such that if there is a
path from node A to node B, then node A appears before node B
in the ordering. For example, for the graph:

Fig. 7. Example of a directed graph 2 (copied from [3])

one topological sort is [4, 1, 5, 2, 3, 6]:

Fig. 8. Example of a topological sort (copied from [3])

A topological sort will not exist for a graph that contains
cycles, as it will have at least two nodes that will
simultaneously require to come before and after each other. For
example:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig. 9. Example of a cyckic graph (copied from [3])

In this graph, 3 has to appear before 5, yet 5 has to appear
before 2 which implies 5 has to appear before 3 as well, which
is a contradiction. It is thus concluded that a topological sort is
not possible.

Kahn’s algorithm is one that can detect a cycle in linear
O(|V| + |E|) time. It works by repeatedly finding vertices with
no incoming edges (also referred to as in-degrees or
predecessors), removing them from the graph, and updating
the incoming edges of the remaining vertices. This process
continues until all the vertices have been ordered. It is also
important to note that disconnected components are
independent of eachother and thus can be ordered arbitrarily (as
long as each of them are themselves orederd). The following is
a rough step by step of Kahn’s algorithm.

1. Add all nodes with in-degree 0 to a queue.

2. If the queue is empty, stop.

3. Otherwise, pop a node from the queue.

4. For each outgoing edge from the removed node, i.e. it’s
successors, decrement the in-degree of the successor
node by 1.

5. If the in-degree of a successor node becomes 0, add it to
the queue and remove it from the graph.

6. If the queue is empty and there are still nodes in the
graph, the graph contains a cycle and cannot be
topologically sorted.

7. Otherwise, repeat from step 2.

8. The nodes in the queue represent the topological
ordering of the graph.

C. Modifying Kahn’s Algorithm to Remove Dependencies

As seen from the previous subsection, Kahn’s algorithm is
capable of detecting a cycle in the graph (step 6). The
algorithm stops because it realizes it isn’t possible to achieve
it’s goal. That being said, because our goal is to remove some
set of edges that cause the cycle, in our end result, we will
eventually have a combination of dependencies that do have a
topological sort. Hence, we can simply continue the algorithm
by removing some edges until an in-degree of a node becomes
zero. We are essentially forcing a topological ordering to be
possible.

This poses the important question: which of the
edges/dependencies do we remove such that the algorithm
can continue and we remove as few as possible? We can
greedily select the node with the least in-degrees, and remove

all of it’s dependencies. Intuitively, this is optimal, because for
all nodes that have larger in-degrees, we will need to erase
more dependencies. However, the formal proof is left as an
exercise to the reader.

The new algorithm now obliges us to keep track of all
nodes in the queue, regardless of their in-degrees. Since we
want to be able to remove the dependencies of the node with
the least in-degrees, we will keep the queue sorted in ascending
order by each node’s in-degree count. As a result, this new
algorithm will have a time complexity upperbounded by O(|V|
+ |E| log |V + E|) The steps for it is as follows (steps 1-4
exactly the same as Kahn’s):

1. Maintain two sets for each node: a successor set and a
predecessor set. The in-degree of a node can now be
inferred from the size of the predecessor set of this
node.

2. Add all nodes to a priority-based queue, with the in-
degrees of each node as the priority.

3. If the queue is empty, stop.

4. Otherwise, pop a node from the queue.

5. If the node priority (which is it’s predecessor count
when it was enqueued) is not the same as it’s current
predecessor count, repeat from step 3. We will ignore
this node as it was modified some time after we last
enqueued it.

6. If the predecessor count of this node is not 0, remove all
of it’s predecessors. This entails removing the edge
from the relevant predecessor and successor sets.

7. For each outgoing edge from the removed node, i.e. for
all nodes in it’s successor set, remove the corresponding
edge from both the successor set of this node the and
predecessor set of the successor node. Enqueue this
node with priority size(successor set) - 1.

8. Repeat from step 2.

9. The nodes in the queue represent the topological
ordering of the graph.

III. TWO CASES

A. Example One: An Illustration

Below is a basic example graph to illustrate Kahn’s as well

as the new algorithm.

Fig. 10. Example of a graph of dependencies

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

For Kahn’s algorithm, we will first calculate the in-degrees of
each node.

Node 1 2 3 4

In-degrees 0 2 2 1

Since 1 is the only node with zero in-degrees, we initialize the
queue as {1}. We then pop 1 and decrement the in-degree of
each successor node of 1.

Node 1 (popped) 2 3 4

In-degrees 0 1 1 1

No new nodes with 0 in-degrees have been found, and no
nodes with 0 in-degrees haven’t been popped from the queue.
Thus, the algorithm ends and we conclude that a topological
sort is not possible.

 In the new algorithm, we shall maintain the predecessor and
successor sets, as mentioned before.

Node 1 2 3 4

Predecessors - 1, 3 1, 4 2

Successors 2, 3 4 2 3

Below is a table that illustrates the process of the algorithm
(the number in brackets in the priority queue column represents
the priority of the queue element).

Iteration 0 Popped Node Priority Queue

 - 1 (0), 3 (1), 4 (1), 2 (2)

Node 1 2 3 4

Predecessors - 1, 3 1, 4 2

Successors 2, 3 4 2 3

Explanation: this is the intialization step.

Iteration 1 Popped Node Priority Queue

 1 2 (1) 3 (1), 3(1), 4 (1), 2 (2)

Node 1 2 3 4

Predecessors - 3 4 2

Successors - 4 2 3

Explanation: 1 is popped.

1. First check that it’s priority is the same as it’s current
predecessor count (this is true).

2. Next, since the predecessor count is 0, we can skip step 6.
Now, 1’s successors are removed and enqueued with the
new predecessor count as the priority.

Iteration 2 Popped Node Priority Queue

 2 4 (0), 3(1), 3(1), 4 (1), 2 (2)

Node 1 2 3 4

Predecessors - - 4 -

Successors - - - 3

Explanation: 2 is popped.

1. First check that it’s priority is the same as it’s current
predecessor count (this is true).

2. Next, since the predecessor count is not 0, we first need
to remove all of it’s dependencies first. Remove 3 from
2’s predecessors and remove 2 from 3’s successors.

3. Finally, we enqueue 2’s successors. The node 4 is
enqueued with priority 0.

Iteration 3 Popped Node Priority Queue

 4 3 (0), 3(1), 3(1), 4 (1), 2 (2)

Node 1 2 3 4

Predecessors - - - -

Successors - - - -

Explanation: 4 is popped.

1. First check that it’s priority is the same as it’s current
predecessor count (this is true).

2. Next, since the predecessor count is not 0, we first need
to remove all of it’s dependencies first. Remove 4 from
3’s predecessors and remove 3 from 4’s successors.

3. Finally, we enqueue 4’s successors. The node 3 is
enqueued with priority 0.

Iteration 4 Popped Node Priority Queue

 3 3(1), 3(1), 4 (1), 2 (2)

Node 1 2 3 4

Predecessors - - - -

Successors - - - -

Explanation: 3 is popped.

1. First check that it’s priority is the same as it’s current
predecessor count (this is true).

2. Next, this node no longer has any successors or
predecessors. Thus, we don’t need to do anything.

Iteration

5-8

Popped Node Priority Queue

 - -

Node 1 2 3 4

Predecessors - - - -

Successors - - - -

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Explanation:

1. Before iteration 5, all nodes in the queue have invalid
priorities. This is because at this point, all the
predecessors are 0.

2. Thus, for each iteration 5 until 8, all we’re doing is just
popping the queue and ignoring the popped node.

3. We reach an empty queue, and thus have completed the
algorithm

The result of the algorithm is as follows:

1. We have removed the 3 → 2 edge in iteration 2. This
means we have erased the dependency “2 depends on
3”.

2. After removing that dependency (and none others),
we were able to topologically sort the graphs vertices.

3. This implies that removing the 3 → 2 edge is enough
to resolve the circular dependency in this graph.

4. Additionally, we have obtained a topological ordering
of the vertices, which is the order of the popped
nodes: 1 → 2 → 4 → 3.

B. Example Two: A Case Study

We now move on to a second, more elaborate example.

Say we have a software project in which the classes are

interdependent. An example of this is a university

management system comprising several classes: Professor,

Course, Student, Department, Schedule, Room, Faculty, and

University. Each class depends on others to model the

complex interactions within the university. It is crucial to

ensure that the class schema avoids circular dependencies

which could pose an issue during compilation. Below is a

table of example dependencies this system could have.

Class Depends On

Professor Department, Faculty

Course Department

Student Department

Faculty -

Schedule Course, Room

Room -

Department Proffesor, Faculty

University Proffesor, Course, Student, Department,

Schedule, Room, Faculty

The result of applying the algorithm to this set of dependencies
is as follows:

1. The removed dependencies are “Course depends on
Department” and “Department depends on Professor”

2. By removing these two dependencies (and none others), we
have obtained the system with resolved circular
dependencies by removing as few dependencies as possible.

3. Additionally, we have obtained a topological ordering of
the classes: Faculty → Room → Course → Schedule →
Department → Proffesor → Student → University

Class Revised Dependencies

Professor Department, Faculty

Course -

Student Department

Faculty -

Schedule Course, Room

Room -

Department Faculty

University Proffesor, Course, Student, Department,

Schedule, Room, Faculty

IV. IMPLEMENTATION

I have implemented the algorithm in Python. However,

first the algorithm should read input from a file input.txt

which has the following format:

1. The first line contains the names of all objects

seperated by a space

2. Then for each every lines after that: the first line is

empty, the second line is an object A, and the third line

is a list of all objects that depend on A

3. Below is an example of the file that describes the

second example in section III.

Proffesor Course Student Department Schedule Room

Faculty University

Proffesor

Department Faculty

Student

Department

Department

Proffesor Faculty

Schedule

Course Room

Course

Department

University

Proffesor Course Student Department Schedule Room

Faculty

Below is the algorithm to process the input file:

succs_list = dict()

preds_list = dict()

""" Input """

with open("input.txt", "r") as f :

 # Helper function

 def get() :

 return list(f.readline().strip().split())

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

 # Initialize the successor list and predecessor

list for each node

 nodes = get()

 for node in nodes :

 succs_list[node] = set()

 preds_list[node] = set()

 # Read each line describing the predecessor of

the node

 while True:

 if not f.readline() : break

 successor = get()[0]

 predecessors = get()

 for pred in predecessors :

 succs_list[pred].add(successor)

 preds_list[successor].add(pred)

And below is the code for the implementation of the

algorithm:

""" Process the graph """

from heapq import heapify, heappush, heappop

seq = []

erased = []

pq = [(len(preds_list[node]), node)

 for node in preds_list]

heapify(pq)

while pq:

 pred_count, node = heappop(pq)

 if pred_count != len(preds_list[node]) :

 continue

 if len(preds_list[node]) != 0 :

 for pred in preds_list[node] :

 erased.append((pred, node))

 succs_list[pred].remove(node)

 preds_list[node] = set()

 for suc in succs_list[node] :

 preds_list[suc].remove(node)

 heappush(pq, (len(preds_list[suc]), suc))

 seq.append(node)

print(" → ".join(seq))

print(erased)

V. CONCLUSION

In this paper, I have demonstrated a simple technique to

resolve circular dependencies by. First, the objects and

dependencies are modelled as a directed graph. Then, Kahn’s

algorithm is modified to select and remove the edges of the

graph that are causing a cycle, thus removing the circular

dependency. The output of this algorithm is then the

dependencies it has removed as well as the topological order

of the objects after the removal.

The algorithm is optimal in the sense that the amount of

dependencies that are removed is as few as possible. However,

in a large system of interconnected dependencies, it may not

be desirable to remove certain dependencies. Which is why,

the algorithm should only be considered as a temporary

solution, and the dependencies should eventually be properly

resolved by design.

VI. ACKNOWLEDGMENTS

I would like to express my gratitude to the lecturers of ITB

Algorithm Strategies IF2211, Mrs. Ulfa Nur Maulidevi, Mrs.

Harlili, Mrs. Fariska Zakhralativa, and Mr. Rinaldi Munir for

sharing their knowledges and guiding the students throughout

the learning process in the class. And of course, I would also

like to thank my friends and family who have provided me

their support and accompanied me day to day throughout the

entire semester. They have made my days a lot more

meaningful.

VII. REFERENCES

[1] Verjans, M. “What is a circular dependency and how can I solve it?”
Stack Overflow, 2016 https://stackoverflow.com/questions/38042130/

[2] Oyetoyan, Tosin Daniel & Falleri, Jean-Rémy & Dietrich, Jens & Jezek,
Kamil. (2015). Circular Dependencies and Change-Proneness: An
Empirical Study. 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2015 - Proceedings.
10.1109/SANER.2015.7081834.

[3] Laaksonen, Antti. Competitive Programming Handbook 1st ed.,
Springer, July 2018.

[4] A. B. Kahn. 1962. Topological sorting of large networks. Commun.
ACM 5, 11 (Nov. 1962), p 558–562.

[5] Alexander A, Penerapan Topological Sorting pada Penjadwalan Proses,
May 2017. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2016-
2017/Makalah2017/Makalah-IF2211-2017-055.pdf

VIII. STATEMENT

I hereby declare that the contents of the paper I have written is

my own writing, not an adaptation or translation of another

author’s paper, and not plagiarised.

Bandung, 12 June 2024

Renaldy Arief Susanto - 13522022

